用希臘字母δ,讀作西格瑪。用英文字母表示即為S^2。標準差用英文字母小寫的s。方差是在概率論和統計方差衡量隨機變量或一組數據時離散程度的度量。方差在統計描述和概率分布中各有不同的定義,并有不同的公式。
方差統計學意義
當數據分布比較分散(即數據在平均數附近波動較大)時,各個數據與平均數的差的平方和較大,方差就較大;當數據分布比較集中時,各個數據與平均數的差的平方和較小。因此方差越大,數據的波動越大;方差越小,數據的波動就越小。
樣本中各數據與樣本平均數的差的平方和的平均數叫做樣本方差;樣本方差的算術平方根叫做樣本標準差。樣本方差和樣本標準差都是衡量一個樣本波動大小的量,樣本方差或樣本標準差越大,樣本數據的波動就越大。
方差和標準差是測算離散趨勢最重要、最常用的指標。方差是各變量值與其均值離差平方的平均數,它是測算數值型數據離散程度的最重要的方法。
