能。在表示純虛數情況下可為負。我們把形如z=a+bi(a,b均為實數)的數稱為復數,其中a稱為實部,b稱為虛部,i稱為虛數單位。當虛部等于零時,這個復數可以視為實數;當z的虛部不等于零時,實部等于零時,常稱z為純虛數。在復數域中,負數-1的平方根記為i即i2=-1。
實數與虛數的區別
一、數學性質不同
實數是有理數和無理數的總稱。數學上,實數定義為與數軸上的實數,點相對應的數。實數可以直觀地看作有限小數與無限小數,實數和數軸上的點一一對應。但僅僅以列舉的方式不能描述實數的整體。實數和虛數共同構成復數。
虛數就是形如a+b*i的數,其中a,b是實數,且b≠0,i2=-1。虛數這個名詞是17世紀著名數學家笛卡爾創立,因為當時的觀念認為這是真實不存在的數字。后來發現虛數a+b*i的實部a可對應平面上的橫軸,虛部b與對應平面上的縱軸,這樣虛數a+b*i可與平面內的點(a,b)對應。
二、表示方式不同
實數可以用來測量連續的量。理論上,任何實數都可以用無限小數的方式表示,小數點的右邊是一個無窮的數列(可以是循環的,也可以是非循環的)。在實際運用中,實數經常被近似成一個有限小數(保留小數點后n位,n為正整數)。
在數學里,將偶指數冪是負數的數定義為純虛數。所有的虛數都是復數。定義為i2=-1。但是虛數是沒有算術根這一說的,所以±√(-1)=±i。對于z=a+bi,也可以表示為e的iA次方的形式,其中e是常數,i為虛數單位,A為虛數的幅角,即可表示為z=cosA+isinA。
