掌握三角函數的內部規律及本質也是學好三角函數的關鍵所在,接下來給大家分享任意角的三角函數公式,一起看一下具體內容。
任意角的三角函數公式
假設α為任意角,則有任意角的三角函數公式為:
sin(2kπ+α)=sinα(k∈Z)
cos(2kπ+α)=cosα(k∈Z)
tan(2kπ+α)=tanα(k∈Z)
三角函數求導公式
正弦函數:(sinx)'=cosx
余弦函數:(cosx)'=-sinx
正切函數:(tanx)'=sec2x
余切函數:(cotx)'=-csc2x
正割函數:(secx)'=tanx·secx
余割函數:(cscx)'=-cotx·cscx
三角函數轉化公式
sin(-α)=-sinα
cos(-α)=cosα
sin(π/2-α)=cosα
cos(π/2-α)=sinα
sin(π/2+α)=cosα
cos(π/2+α)=-sinα
sin(π-α)=sinα
cos(π-α)=-cosα
sin(π+α)=-sinα
tanα=sinα/cosα
tan(π/2+α)=-cotα
tan(π/2-α)=cotα
tan(π-α)=-tanα
tan(π+α)=tanα
三角函數的萬能公式
sin(a)=[2tan(a/2)]/[1+tan2(a/2)]
cos(a)=[1-tan2(a/2)]/[1+tan2(a/2)]
tan(a)=[2tan(a/2)]/[1-tan2(a/2)]
