復(fù)數(shù)運(yùn)算法則有加減法、乘除法。兩個(gè)復(fù)數(shù)的和依然是復(fù)數(shù),它的實(shí)部是原來兩個(gè)復(fù)數(shù)實(shí)部的和,它的虛部是原來兩個(gè)虛部的和。復(fù)數(shù)的加法滿足交換律和結(jié)合律。
一.復(fù)數(shù)的定義
我們把形如z=a+bi(a,b均為實(shí)數(shù))的數(shù)稱為復(fù)數(shù),其中a稱為實(shí)部,b稱為虛部,i稱為虛數(shù)單位。當(dāng)z的虛部等于零時(shí),常稱z為實(shí)數(shù);當(dāng)z的虛部不等于零時(shí),實(shí)部等于零時(shí),常稱z為純虛數(shù)。復(fù)數(shù)域是實(shí)數(shù)域的代數(shù)閉包,即任何復(fù)系數(shù)多項(xiàng)式在復(fù)數(shù)域中總有根。
二.復(fù)數(shù)運(yùn)算公式
1.加法法則:復(fù)數(shù)的加法按照以下規(guī)定的法則進(jìn)行:設(shè)z1=a+bi,z2=c+di是任意兩個(gè)復(fù)數(shù),則它們的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。
2.減法法則:復(fù)數(shù)的減法按照以下規(guī)定的法則進(jìn)行:設(shè)z1=a+bi,z2=c+di是任意兩個(gè)復(fù)數(shù),則它們的差是 (a+bi)-(c+di)=(a-c)+(b-d)i。
3.乘法法則:規(guī)定復(fù)數(shù)的乘法按照以下的法則進(jìn)行:設(shè)z1=a+bi,z2=c+di(a、b、c、d∈R)是任意兩個(gè)復(fù)數(shù),那么它們的積(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
4.除法法則:復(fù)數(shù)除法定義:滿足(c+di)(x+yi)=(a+bi)的復(fù)數(shù)x+yi(x,y∈R)叫復(fù)數(shù)a+bi除以復(fù)數(shù)c+di的商。
