數(shù)學(xué)是一門很重要的學(xué)科,下面是初一下冊數(shù)學(xué)重點(diǎn)知識點(diǎn)的總結(jié),希望能在數(shù)學(xué)的學(xué)習(xí)上給大家?guī)韼椭?/p>
整式
1. 單項式
(1)由數(shù)與字母的積組成的代數(shù)式叫做單項式。單獨(dú)一個數(shù)或字母也是單項式。
(2)單項式的系數(shù)是這個單項式的數(shù)字因數(shù),作為單項式的系數(shù),必須連同數(shù)字前面的性質(zhì)符號,如果一個單項式只是字母的積,并非沒有系數(shù)。
(3)一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。
2.多項式
(1)幾個單項式的和叫做多項式.在多項式中,每個單項式叫做多項式的項.其中,不含字母的項叫做常數(shù)項。一個多項式中,次數(shù)最高項的次數(shù),叫做這個多項式的次數(shù)。
(2)單項式和多項式都有次數(shù),含有字母的單項式有系數(shù),多項式?jīng)]有系數(shù).多項式的每一項都是單項式,一個多項式的項數(shù)就是這個多項式作為加數(shù)的單項式的個數(shù).多項式中每一項都有它們各自的次數(shù),但是它們的次數(shù)不可能都作是為這個多項式的次數(shù),一個多項式的次數(shù)只有一個,它是所含各項的次數(shù)中最高的那一項次數(shù)。
3.整式的乘法
1.單項式乘法法則:單項式相乘,把它們的系數(shù)、相同字母分別相乘,對于只在一個單項式里含有的字母,連同它的指數(shù)作為積的一個因式。
2.單項式乘法法則在運(yùn)用時要注意以下幾點(diǎn):
①積的系數(shù)等于各因式系數(shù)積,先確定符號,再計算絕對值。這時容易出現(xiàn)的錯誤的是,將系數(shù)相乘與指數(shù)相加混淆;
②相同字母相乘,運(yùn)用同底數(shù)的乘法法則;
③只在一個單項式里含有的字母,要連同它的指數(shù)作為積的一個因式;
④單項式乘法法則對于三個以上的單項式相乘同樣適用;
⑤單項式乘以單項式,結(jié)果仍是一個單項式。
相交線與平行線
1.平行線的性質(zhì)
性質(zhì)1:兩直線平行,同位角相等。 性質(zhì)2:兩直線平行,內(nèi)錯角相等。 性質(zhì)3:兩直線平行,同旁內(nèi)角互補(bǔ)。 平行線的判定:
判定1:同位角相等,兩直線平行。 判定2:內(nèi)錯角相等,兩直線平行。 判定3:同旁內(nèi)角相等,兩直線平行。
2.鄰補(bǔ)角:兩條直線相交所構(gòu)成的四個角中,有公共頂點(diǎn)且有一條公共邊的兩個角是鄰補(bǔ)角。 對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。 垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。 平行線:在同一平面內(nèi),不相交的兩條直線叫做平行線。 同位角、內(nèi)錯角、同旁內(nèi)角:
3.同位角:∠1與∠5像這樣具有相同位置關(guān)系的一對角叫做同位角。 內(nèi)錯角:∠2與∠6像這樣的一對角叫做內(nèi)錯角。 同旁內(nèi)角:∠2與∠5像這樣的一對角叫做同旁內(nèi)角。 命題:判斷一件事情的語句叫命題。
4.平移:在平面內(nèi),將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。 對應(yīng)點(diǎn):平移后得到的新圖形中每一點(diǎn),都是由原圖形中的某一點(diǎn)移動后得到的,這樣的兩個點(diǎn)叫做對應(yīng)點(diǎn)。
二元一次方程
二元一次方程:含有兩個未知數(shù),并且未知數(shù)的指數(shù)都是1,像這樣的方程叫做二元一次方程,一般形式是 ax+by=c(a≠0,b ≠0) 。
二元一次方程組:把兩個二元一次方程合在一起,就組成了一個二元一次方程組。
二元一次方程的解:一般地,使二元一次方程兩邊的值相等的未知數(shù)的值叫做二元一次方程組的解。
二元一次方程組的解:一般地,二元一次方程組的兩個方程的公共解叫做二元一次方程組。 消元:將未知數(shù)的個數(shù)由多化少,逐一解決的想法,叫做消元思想。
代入消元:將一個未知數(shù)用含有另一個未知數(shù)的式子表示出來,再代入另一個方程,實現(xiàn)消元,進(jìn)而求得這個二元一次方程組的解,這種方法叫做代入消元法,簡稱代入法。
加減消元法:當(dāng)兩個方程中同一未知數(shù)的系數(shù)相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數(shù),這種方法叫做加減消元法,簡稱加減法。
不等式與不等式組
不等式的解集:一個含有未知數(shù)的不等式的所有解,組成這個不等式的解集。
一元一次不等式:不等式的左、右兩邊都是整式,只有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。
一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個一元一次不等式合在一起,就組成了一個一元一次不等式組。
一元一次不等式組的解集:一元一次不等式組中各個不等式的解集的公共部分,叫做這個一元一次不等式組的解集。 三、定理與性質(zhì) 不等式的性質(zhì):
不等式的基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個數(shù)(或式子),不等號的方向不變。 不等式的基本性質(zhì)2:不等式的兩邊都乘以(或除以)同一個正數(shù),不等號的方向不變。 不等式的基本性質(zhì)3:不等式的兩邊都乘以(或除以)同一個負(fù)數(shù),不等號的方向改變
