數學是初中學習中一門很重要的學科,下面是小編給大家總結的數學初一下冊知識點,希望能在數學的學習上給大家帶來幫助。
平面直角坐標系
1.定義:平面內畫兩條互相垂直、原點重合的數軸,組成平面直角坐標系。水平的數軸稱為x軸或橫軸,習慣上取向右為正方向;豎直的數軸稱為y軸或縱軸,取向上方向為正方向;兩坐標軸的交點為平面直角坐標系的原點。
2.平面上的任意一點都可以用一個有序數對來表示,記為(a,b),a是橫坐標,b是縱坐標。
3.原點的坐標是(0,0);
縱坐標相同的點的連線平行于x軸;
橫坐標相同的點的連線平行于y軸;
x軸上的點的縱坐標為0,表示為(x,0);
y軸上的點的橫坐標為0,表示為(0,y)。
4.建立了平面直角坐標系以后,坐標平面就被兩條坐標軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標軸上的點不屬于任何象限。
5.幾個象限內點的特點:
第一象限(+,+);第二象限(—,+);
第三象限(—,—);第四象限(+,—)。
6.(x,y)關于原點對稱的點是(—x,—y);
(x,y)關于x軸對稱的點是(x,—y);
(x,y)關于y軸對稱的點是(—x,y)。
7.點到兩軸的距離:點P(x,y)到x軸的距離是︱y︳;
點P(x,y)到y軸的距離是︱x︳。
8.在第一、三象限角平分線上的點的坐標是(m,m);
在第二、四象限叫平分線上的點的坐標是(m,—m)。
概率
1.一般地,在大量重復試驗中,如果事件A發生的頻率n/m會穩定在某個常數p附近,那么這個常數p就叫做事件A的概率。
2.隨機事件:在一定的條件下可能發生也可能不發生的事件,叫做隨機事件。
3.互斥事件:不可能同時發生的兩個事件叫做互斥事件。
4.對立事件:即必有一個發生的互斥事件叫做對立事件。
5.必然事件:那些無需通過實驗就能夠預先確定它們在每一次實驗中都一定會發生的事件稱為必然事件。
6.不可能事件:那些在每一次實驗中都一定不會發生的事件稱為不可能事件。
相交線與平行線
1.平行線的性質
性質1:兩直線平行,同位角相等。 性質2:兩直線平行,內錯角相等。 性質3:兩直線平行,同旁內角互補。 平行線的判定:
判定1:同位角相等,兩直線平行。 判定2:內錯角相等,兩直線平行。 判定3:同旁內角相等,兩直線平行。
2.鄰補角:兩條直線相交所構成的四個角中,有公共頂點且有一條公共邊的兩個角是鄰補角。
對頂角:一個角的兩邊分別是另一個叫的兩邊的反向延長線,像這樣的兩個角互為對頂角。
垂線:兩條直線相交成直角時,叫做互相垂直,其中一條叫做另一條的垂線。
平行線:在同一平面內,不相交的兩條直線叫做平行線。 同位角、內錯角、同旁內角:
3.同位角:∠1與∠5像這樣具有相同位置關系的一對角叫做同位角。
內錯角:∠2與∠6像這樣的一對角叫做內錯角。
同旁內角:∠2與∠5像這樣的一對角叫做同旁內角。 命題:判斷一件事情的語句叫命題。
4.平移:在平面內,將一個圖形沿某個方向移動一定的距離,圖形的這種移動叫做平移平移變換,簡稱平移。
對應點:平移后得到的新圖形中每一點,都是由原圖形中的某一點移動后得到的,這樣的兩個點叫做對應點。
實數的運算
1.加法
同號兩數相加,取相同的符號,并把絕對值相加;絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值;互為相反數的兩個數相加得0;一個數同0相加,仍得這個數。
2.減法:減去一個數等于加上這個數的相反數。
3.乘法
幾個非零實數相乘,積的符號由負因數的個數決定,當負因數有偶數個時,積為正;當負因數有奇數個時,積為負.幾個數相乘,有一個因數為0,積就為0。
4.除法
除以一個數,等于乘上這個數的倒數.兩個數相除,同號得正,異號得負,并把絕對值相除.0除以任何一個不等于0的數都得0。
5.乘方與開方
(1)an所表示的意義是n個a相乘,正數的任何次冪是正數,負數的偶次冪是正數,負數的奇次冪是負數。
(2)正數和0可以開平方,負數不能開平方;正數、負數和0都可以開立方。
(3)零指數與負指數。
