很多學生都會經常感覺到眼睛干,下面比網校小編就大家整理一下初一數學重要知識點歸納整理,僅供參考。
對值
一般地,數軸上表示數a的點與原點的距離叫做數a的絕對值。
一個正數的絕對值是它的本身;一個負數的絕對值是它的相反數;0的絕對值是0。
在數軸上表示有理數,它們從左到右的順序,就是從小到大的順序,即左邊的數小于右邊的數。
比較有理數的大小:⑴正數大于0,0大于負數,正數大于負數。
⑵兩個負數,絕對值大的反而小。
有理數的加減法
1有理數的加法
有理數的加法法則:
⑴同號兩數相加,取相同的符號,并把絕對值相加。
⑵絕對值不相等的異號兩數相加,取絕對值較大的加數的符號,并用較大的絕對值減去較小的絕對值?;橄喾磾档膬蓚€數相加得0。
⑶一個數同0相加,仍得這個數。
有理數大小比較
(1)有理數的大小比較
比較有理數的大小可以利用數軸,他們從左到有的順序,即從大到小的順序(在數軸上表示的兩個有理數,右邊的數總比左邊的數大);也可以利用數的性質比較異號兩數及0的大小,利用絕對值比較兩個負數的大小.
(2)有理數大小比較的法則:
①正數都大于0;
②負數都小于0;
③正數大于一切負數;
④兩個負數,絕對值大的其值反而小.
【規律方法】有理數大小比較的三種方法
1.法則比較:正數都大于0,負數都小于0,正數大于一切負數.兩個負數比較大小,絕對值大的反而小.
2.數軸比較:在數軸上右邊的點表示的數大于左邊的點表示的數.
3.作差比較:
若a﹣b>0,則a>b;
若a﹣b<0,則a
若a﹣b=0,則a=b.
5.有理數的減法
(1)有理數減法法則:減去一個數,等于加上這個數的相反數. 即:a﹣b=a+(﹣b)
(2)方法指引:
①在進行減法運算時,首先弄清減數的符號;
②將有理數轉化為加法時,要同時改變兩個符號:一是運算符號(減號變加號); 二是減數的性質符號(減數變相反數);
絕對值
(1)概念:數軸上某個數與原點的距離叫做這個數的絕對值.
①互為相反數的兩個數絕對值相等;
②絕對值等于一個正數的數有兩個,絕對值等于0的數有一個,沒有絕對值等于負數的數.
③有理數的絕對值都是非負數.
(2)如果用字母a表示有理數,則數a 絕對值要由字母a本身的取值來確定:
①當a是正有理數時,a的絕對值是它本身a;
②當a是負有理數時,a的絕對值是它的相反數﹣a;
③當a是零時,a的絕對值是零.
即|a|={a(a>0)0(a=0)﹣a(a<0)
一元一次方程解應用題的五個步驟
1.審:仔細審題,確定已知量和未知量,找出它們之間的等量關系.
2.設:設未知數(x),根據實際情況,可設直接未知數(問什么設什么),也可設間接未知數.
3.列:根據等量關系列出方程.
4.解:解方程,求得未知數的值.
5.答:檢驗未知數的值是否正確,是否符合題意,完整地寫出答句.
15.專題:正方體相對兩個面上的文字
(1)對于此類問題一般方法是用紙按圖的樣子折疊后可以解決,或是在對展開圖理解的基礎上直接想象.
(2)從實物出發,結合具體的問題,辨析幾何體的展開圖,通過結合立體圖形與平面圖形的轉化,建立空間觀念,是解決此類問題的關鍵.
(3)正方體的展開圖有11種情況,分析平面展開圖的各種情況后再認真確定哪兩個面的對面.
以上就是比網校小編為大家整理的 初中數學知識點:初一數學重要知識點歸納整理。
